logo

This page provides a top-level description of Small Transmitting Loop antennas (a.k.a. "Magnetic Loops"), and my two versions of such an antenna for 80 mtrs and up. My smaller 40-20 loop is described here.


INTRODUCTION

I wanted a small transmitting loop (STL) antenna that covers at least the 80 and 40 meter bands (preferable 80 - 20). Why?

  • I want to do 80 mtrs DX, but I have no room for a decent 80 m wire-antenna, nor would I be able to install such an antenna high enough above ground. I have had some success with short, loaded vertical antennas with a single elevated radial, see here and here. But I cannot install those permanently at my QTH.
  • Below 10 MHz, our apartment building generates a large amount of "electro-smog" QRM. An STL tends to be less sensitive to picking up electrical noise in the near-field (< 1 λ), which appears to be the reason why this type of antenna is also referred to as a "magnetic loop antenna".
  • STLs have a radiation pattern with directivity. They are also small enough to rotate with a small motor, or TV-antenna rotor.
  • They are less conspicuous (to my friends of the home-owners association "police") than a wire antenna that is strung along the outside of the building.
  • I don't want to have to mess with radials, counterpoises, RF-grounds, etc. Loops are inherently symmetrical, like dipoles.
  • Can be installed close to the ground (vertically oriented), without significantly losing efficiency. Yes, higher is better.

A loop antenna is generally considered "small", if its circumference is less than 10% of the operating wavelength. So in my case (for 80 mtrs), "small" would be a circumference of less than 8 mtrs, e.g., a circular loop with a diameter less than 2.5 mtrs (≈ 8.2 ft). To be more precise, we are talking about a small resonant loop.

Note that a multi-band loop that is "small" in the lowest band, is not necessarily "small" in the higher bands.

To obtain resonance, we need to combine inductive and capacitive reactance. The loop itself is the equivalent of a single winding of a coil, so it has a self-inductance. Resonance is obtained by connecting a capacitor across the ends of the opened loop. The capacitance has to be appropriate for the desired resonance frequency, as in all resonant circuits. Note that the loop-winding not only has inductance, but also stray capacitance. So, even without the additional tuning capacitor installed, the loop has a resonance frequency. It is the maximum resonance frequency that can be obtained with the particular loop.

A loop antenna is basically a simple series-resonant circuit, comprising an inductor with the shape of a closed-loop, a tuning capacitor inserted somewhere in this loop, and components representing losses within the loop + capacitor, and to the environment.

Mag Loop

Simplified equivalent electrical circuit of an STL


"Tuning" the antenna is done by keying the transmitter (at low power setting) and observing the SWR-meter or antenna-current meter while adjusting the tuning capacitor. Alternatively, by tuning for maximum receiver noise level: there should be a sharp increase in the noise level when the antenna becomes tuned to the desired operating frequency.

As with all antennas, "radiation resistance" is very important parameter. This is a fictitious resistance that relates the power that is radiated by the antenna, to the current flowing in the antenna. It is directly related to antenna efficiency. As the graph below shows, the radiation resistance of an STL is very small - we are talking milliohms here! This implies that loss resistances (e.g., loop construction) of the same order of magnitude are also important!

Mag Loop

Radiation resistance of a Small Transmitting Loop antenna


An other important aspect to keep in mind, is the voltage and the current distribution along the loop - at resonance. As shown in the figure below, the voltage is highest at the capacitor, and zero at the point diametrically opposed (in a perfectly symmetrical loop + capacitor + capacitor connections + environment). In some coupling methods, the braid of the coax feedline is actually connected to that neutral point.

Mag Loop

Voltage distribution around a loop antenna


The current is highest at the point opposite the capacitor, and lowest at the capacitor. See ref. 1 for an illustration. Note that the minimum current is not zero! Unlike the voltage distribution, the current distribution depends on the size of the loop (circumference), as a fraction of the wavelength. For a small transmitting loop (circumference < 0.1 λ), the current distribution is nearly constant (uniform) around the loop. Based on the (symmetrical) voltage and the current distributions, the impedance (Z = V / I) varies around the circumference. Both the voltage and the current distribution are symmetrical.

Mag Loop

Current distribution around a loop antenna - a circumference > 0.1 λ is not "small"


Clearly, the resulting impedance (ratio of voltage and current) also varies around the loop. It is highest near the capacitor and lowest at the point opposite the capacitor. E.g., there are two points, left and right of the neutral point opposite the capacitor, where the impedance is 50 ohm points with respect to that neutral point. This property is used in coupling methods such as Gamma Match and Delta Match. The position-dependent impedance can also be used when deciding where to place a transformer coupling to the feedline.

The diagram above shows that the largest current occurs at the point opposite the capacitor. This part of the antenna radiates most. Some operators therefore install their loop with the capacitor at the bottom. However, this effect only becomes noticeable when the loop circumference is at least 0.2 λ. Furthermore, placing the part with the highest voltage closest to the ground, increases losses due to parasitic capacitance to ground...

The radiation pattern of a Small Transmitting Loop antenna is shown below. The kidney-shape of the horizontal pattern (top view) becomes more pronounced ( = deeper minimums) as the antenna circumference becomes a larger fraction of the wavelength. This is the case when operating a multi-band STL on the higher band(s). For large loops, the maximums of the horizontal pattern are actually in the directions perpendicular to the surface of the loop!

Mag Loop

Approximate radiation pattern of a vertically oriented Small Transmitting Loop antenna

(circumference = 0.15 λ, installed 0.08 λ above ground)

Due to the closed-loop shape, this type of antenna can be considered an extreme case of a "terminated folded dipole". A standard loop has a circular single-turn inductor. Of course, other shapes are possible: square, rectangular, octagonal, etc. There are variations such as multiple turns and configurations such as "figure-eight". As with dipoles, directivity and gain can be increased by adding passive reflector and director loops, as in so-called multi-element "Yagi" beam antennas. This is all beyond the scope of this discussion.

Just to get a feel for some basic parameters, I have calculated the characteristics for a circular loop with a circumference of 5 m (diameter =1.6 m, ≈ 5.2 ft), made of copper tubing with a standard 16 mm outside diameter (5/8"). Input power is 100 watt (the limit of my transmitter).

Mag Loop

Calculated antenna characteristics for the given copper loop (KI6GD calculator, ref. 2A)

(no additional losses assumed in the calculation)


Mag Loop

Calculated antenna characteristics for the given copper loop (AA5TB calculator, ref. 2B)

(no additional losses assumed in the calculation)

If the input power is increased by a factor of N, then the maximum voltage across the capacitor is increased by a factor √N. E.g., doubling the power increases the capacitor voltage by ≈1.4. Conversely, the voltage is reduced by a factor of 1.4 when the input power is reduced by a factor 2.


Mag Loop

Capacitor voltage as a function of frequency, calculated for 1.6 mtr Ø loop made of 16 mm OD copper tubing

(calculated with ref. 2B; assumed 5 milliohm loss resistance)

One important thing that the tables show, is the very high voltages across the capacitor at resonance. This is not only important when choosing a suitable capacitor, it is also a SAFETY issue!

Mag Loop

As a rule of thumb, the optimum circumference of a multi-band STL is about 0.15 λ of the lowest operating frequency. With an appropriate variable capacitor, the resonance frequency of an  STL can be tuned over a frequency range that covers at least two octaves ( = factor 4x). However, from an antenna efficiency point of view, a factor of 2-3 is probably the practical limit. E.g., 80-40, 40-20, 30-10.

"Efficiency" is "power radiated by the antenna" divided by "power applied to the antenna". The tables above show that the calculated / predicted efficiency for 80 mtrs is rather low (no surprise), but my other antennas for 80 mtr are (very) short verticals. I do not know what their efficiency is, but I am sure that it is very low. In the end, what counts is performance at my location, for the available space, for the prevailing conditions (proximity to the building, QRM levels, etc), and with respect to other antennas that I can (afford to) install there. The efficiency of STL antennas remains controversial (ref. 3).

I have not looked into the assumptions that the calculators make, regarding installation height (free space?), coupling method, etc. As in all high-Q resonant circuits, calculated and actual performance is highly dependent on the losses in all components (loop, capacitor) and all interconnections. Losses in the milli-ohm range may be significant! In general, increasing the diameter of the tubing will reduce the (inductor) losses - up to a point.

Instead of the standard tubular conductor, loops can be made of a wide, flat conductor strip such as copper "flashing" or foil. The strip can be straight (ref. 4), or helically wound (hence, helically loaded, ref. 5A/B). Of course, helical/spiral "hula hoop" antennas can also be made of a Slinky™ coil. Ref 5C. This too is beyond the scope of this discussion.

Mag Loop

Flat conductor loops (straight & helically wound/loaded (shown without capacitor) and Slinky™ coil loop

(sources: ref. 4 and 5)

THE TUNING CAPACITOR

A loop with a fixed-value capacitor is resonant at a single, fixed frequency. A well-constructed small loop antenna has a bandwidth that requires re-tuning when changing frequency across a band. Also, the resonance frequency will vary with temperature changes (sunshine/weather). In order to change the resonance frequency to the desired operating frequency, we need a variable capacitor.

The basic choice is between "air variable" capacitor and "vacuum variable" capacitor. Clean air has a dielectric strength of 0.8 kV per mm (at 20 °C and standard humidity). So, an "air variable capacitor" for 5 kV would need an air gap of 6.25 mm (1/4 inch) between the plates. High-vacuum has a dielectric strength at least 10x as high.

A typical air-variable capacitor is "rotary variable". It consists of a stack of stator plates ( = stationary), and a stack of plates that are mounted on a rotor shaft. The rotor plates intermesh with the stator plates. Ideally, the rotor plate "vanes" are welded to the rotor shaft, rather than clamped. There are at least two basic types:

  • Single-stator: variable capacitors with a sliding wiper-contact on the rotor. These contacts cause losses (series resistance), makes tuning a bit "jumpy", and causes receiver noise when changing rotor position. Such capacitors are generally to be avoided.
  • Split-stator: basically two variable capacitors, side-by-side on one shaft. The rotor vanes of both capacitors are mounted onto the same conductive shaft, so they are electrically connected. The two stators are not interconnected (e.g., via the frame of the capacitor). If the rotor connection (if there is one) is not used, then we have a variable capacitor without the disadvantages of the wiper contact. Of course, putting two capacitors in series doubles the voltage rating, but at the same time it halves the capacitance... Some split-stator types have the stator stacks not only side-by-side on the shaft, but also diametrically opposed. These are sometimes referred to as "transmitting type split-stator" capacitors.
  • "Butterfly" capacitor: special form of split-stator. The rotor vanes are typically shaped like a bow-tie ("butterfly wings"). The stator stack is split in two, but not arranged side-by-side but opposite of each other. This arrangement always allows the shaft to be rotated without limitation (i.e., more than 360 degrees), which is often not the case with the other types of capacitor. 

Mag Loop

Single-stator (with sliding contact), split-stator (limited to 180° rotation) and butterfly trimmer-capacitor


Rather than meshing stacks of rotor and stator plates, a variable capacitor can also consist of "trombone-style" coaxial tubes: one tube is slid in and out of a slightly larger "stator" tube. This principle is also used in variable vacuum capacitors, see below.

The tables in the previous section show that the assumed loop should be tunable from 80-20 mtrs with a 15-500 pF high-voltage variable capacitor. Note: a commercial air-variable capacitor for 15-500 pF and 5-10 kV is not necessarily smaller or less expensive than an equivalent vacuum variable capacitor! In 2010, I purchased a Russian-made capacitor. It is marked "10 kB 10-500 πФ" in other words: "10 kV,10-500 pF". I measured 15-510 pF with a simple LCR-meter. This "bottle" is quite heavy: 2.2 kg (≈ 4.8 lbs). It takes 36 revs of the shaft to go from minimum to maximum capacitance.

Mag Loop

My vacuum capacitor


A vacuum variable capacitor uses two sets of plates concentric thin-wall cylinders. On such set can be slid in or out of the opposing set of cylinders ("sleeve and plunger"). Spacing between opposing cylinders is several mm. These plates are then sealed inside of a non-conductive envelope such as a glass or ceramic "bottle", and placed under a high vacuum. The movable part (plunger) is mounted on top of a flexible metal membrane (harmonica-style bellows). The membrane seals and maintains the vacuum. A screw-shaft is attached to the plunger. When the shaft is turned, the plunger moves in or out of the sleeve and the value of the capacitor changes. The vacuum dielectric significantly increases the voltage rating of the capacitor, compared to an air-variable capacitor of the same dimensions and construction.

I did a quick test to verify integrity of the vacuum: put the capacitor in the refrigerator for about an hour. There should be no formation of condensation on the inside of the glass when in the fridge, or after taking it back out (on outside is OK).

Note: the temperature coefficient of air-variable and vacuum capacitors is small: typically in the range of 20-100 ppm/°C for air capacitors, and 20-30 ppm/°C for vacuum capacitors. However, for an air-variable capacitor this only applies in "standard dry air atmosphere". In a high humidity environment, the capacitance (hence, the resonance frequency of the loop, and SWR) may actually change noticeably when the temperature of the capacitor changes, e.g., when transmitting.


COUPLING A LOOP TO THE FEEDLINE

The loop antenna will be connected to my transceiver via a coax feed-line. This means that the coax needs to be coupled to the loop, and the coupling must be wide-band enough to cover the tuning range of my antenna. As with other types of antennas, there are several ways to do this:



Note: this is only a overview of the most common methods. The list is not exhaustive.

INDUCTIVE COUPLING

The most common coupling method is using an inductive coupling loop. The main loop and the coupling loop form a (rather) loosely coupled transformer. The turns ratio is fixed (1:1), but there are several coupling loop parameters that affect the coupling:

  • The size of the coupling loop. Its standard diameter is 1/5 that of the main loop. However, I have seen designs with 1/3 to 1/8 the diameter of the main loop.
  • The shape of the loop. The standard shape is circular. Obviously, like the main loop, other shapes can be used (square, octagonal, ..). To obtain the desired coupling, the coupling loop can be squashed or stretched into a vertical oval or egg-shape. This changes the aperture of the loop (area of the "opening"), as well as the distance to the main loop.
  • Placement along the main loop. Standard is opposite the tuning capacitor. However, to adjust the coupling, it can be moved off-center, along the main loop.
  • Proximity to the main loop. Normally, the coupling loop is placed opposite the tuning capacitor, close to the main loop.
  • Alignment with the main loop. That is: whether the plane of the coupling loop coincides with that of the main loop. The coupling with the main loop can be varied by turning the coupling loop about its vertical axis (from where the coax is connected to the point at the top of the loop), such that it sticks through the main loop. Instead of turning, it can also be bent.
  • The gauge of the conductor - as with all coils / inductors.

    A distinction is made between "un-shielded" and "shielded" coupling loops.

    Unshielded coupling loops are very simple:

    • A heavy gauge wire or small diameter copper tubing; the conductor need not be heavier gauge than the center-conductor of the feed-line coax. However, heavier conductor will help retain shape of loop, and make it self-supporting. I have used "extra heavy" single-strand installation wire of 2.5 mm2.
    • The shield of a section of coax cable. The center conductor is left unconnected, or both ends of it are connected to the shield.
    • The center conductor of coax, with outer insulation and braid fully removed. The dielectric material of the coax is kept, and provides rigidity.
    Mag Loop

    Un-shielded coupling loops

    (solid wire, braid of coax, center-conductor of coax)

    One variation of this is a "tuned coupling loop", but is does not appear to be popular:

    Mag Loop

    Un-shielded coupling loop with a tuning and a loading capacitor


    An other variation on the common wire loop is what I call the "coat hanger" coupling loop. It consists of insulated wire (e.g., installation wire, or even heavy enameled copper wire). The overall wire length is a little more than the diameter of the main loop. The coupling loop is symmetrically placed onto (and affixed to) the main loop, over a distance equal to 1/2 the main loop's diameter (i.e., ≈ 1/6 the loop's circumference). Rather than connecting the coax at the bottom, it is connected at the top of the feed loop. I.e., an upside-down wire loop. The wire ends are folded towards each other, joined and twisted over a distance of about 10-12 cm (4-5"; not critical), and connected to the coax. A current choke "balun" is placed near the coupling. The point where the wire ends are twisted, is moved up or down, to obtain the desired matching.

    I have only briefly played with this coupling method. The antenna's resonance frequency varied quite a bit when the twisted connection to the coax was moved up and down. SWR was relatively flat over a significant frequency range - about 200 kHz, quite a bit wider than with a regular coupling loop.

    This is similar to the triangular feed-loop of my (mono-band) spiral loop antennas, where the coupling loop has a circumference that is 1/8 that of the spirally-wound 1/4 λ main loop.

    Mag Loop

    The second type of inductive coupling loop is the shielded loop, often referred to as a "Faraday Loop". As with the unshielded coupling loop, the typical diameter is 1/5 that of the main loop (though some people have better results with a coupling loop as small as 1/8 the size of the main loop). For ease of construction, this coupling loop is typically made of a section of coax cable.

    There is number of variations that differ with regard to:

    • whether the coax braid (= shield) is interrupted at the point half way around the loop,
    • whether the center conductor is interrupted at that same point,
    • how the braid and center conductor are connected at the starting point of the loop.
    Mag Loop

    Variations of shielded coupling loops


    Mag Loop

    Some people feel (or claim) that the "shielding" provides better screening from "electrostatic" noise. I am not aware of any convincing evidence that this makes any significant difference with respect to un-shielded coupling loops. If it did make a difference, the same principle could be applied to the main loop...

    For the same diameter, the unshielded and the various shielded coupling loops all have a different self-resonance frequency (easily measured when not coupled to the main loop).

    Jochen Huebl (DG1SFJ) has done some interesting comparative measurements with an unshielded coupling loop, and with shielded coupling loop variations D and E (ref. 6A). The coupling loop (in his case: 16.5cm (6.5"), 1/5 the diameter of the main loop) was placed in the same plane as the main loop, opposite the tuning capacitor. He then varied the distance d between the two loops: starting with the coupling loop against the main loop (with some insulation between them), then moving the coupling loop closer to the center of the main loop (max 10 cm / 4 inch). See the figure below:

    Mag Loop

    The experiment of Jochen (DG1SFJ)


    As the induced magnetic field decreases with distance, the coupling between the two loops becomes weaker when the distance is increased. Note that it basically makes no difference whether the coupling loop is inside the main loop or outside. Jochen's observations are:

    • SWR increased linearly with the distance between the coupling and main loop (from close to 1:1 to ca. 5:1).
    • Lowest SWR was obtained with the coupling loop closest to the main loop.
    • The shielded coupling loops had slightly better SWR than the unshielded coupling loop.
    • Return-loss (VNA parameter S11) increased rapidly when the distance was increased from 0 to 2-3 cm (1"), then became flat with further increase in distance. Over the initial distance increase, the shielded coupling loops had about 6 dB less return-loss, i.e., better coupling.

    CAPACITIVE COUPLING

    The capacitive coupling methods basically consist of one or two tuning capacitors, and one or two loading capacitors. This suggests that there are several configurations, as is indeed the case. This type of coupling is much "tighter" than with the coupling loops described above. This may make the antenna system more effective, even though the "Q" of the loop is reduced.

    Mag Loop

    Capacitive coupling methods


    Configuration B in the figure above is referred to as the "Patterson loop" (ref. 6B) or "Army loop". It was used in overseas adventures of the US army in the 1960s. The octagonal loop for 2-5 MHz consisted of 5 ft (1.5 m) sections of aluminium tubing (diameter: 1.75 ", 4.5 cm). The ends of the tubes were gold plated, to reduce contact resistance.

    Mag Loop

    The tuning & matching unit of the "Patterson" Loop

    (note that tuning is done based on maximizing the antenna current, not minimizing SWR)


    MAGNETIC TRANSFORMER COUPLING (FERRITE RING)

    A simple transformer coupling can be made, by passing the antenna loop through a ferrite ring (toroidal core). The secondary side of the transformer is then formed by one or more turns of insulated wire. The coax cable is connected across the secondary winding. There are no adjustments or other manipulations required.

    This coupling method only has a few simple variables:

    • The type of ferrite material.
    • The size of the ferrite cores.
    • The number of stacked cores.
    • the number of secondary turns.

    There are many different ferrite material mixes. Most commonly used in STL transformers are Amidon / Fair-Rite / Micro Metals mixes nr. 31, 43, and 61 (or equivalents from another manufacturer). Important parameters from the data sheets (ref. 7) are "Initial Permeability and Loss Factor vs. Frequency" and "Core Loss vs. AC Flux Density" curves. Note that the permeability of ferrites varies with the magnetic flux level. Hence inductance of a coil or transformer made of such material will change with the power level. Power handling of a loop with transformer coupling is often limited by core losses, rather than the voltage rating of the tuning capacitor. These core losses (primarily hysteresis loss and eddy-current loss) roughly increase with the square of the flux density in the core, at any frequency. Some recommendations:

    • Mix 43 becomes quite lossy above about 7 MHz. Use this material mix for 80-40 mtrs, possibly 80-30.
    • Below 5 MHz, Mix 31 (a manganese-zinc mix) is probably a better choice than type 43 (nickel-zinc mix). 
    • To cover 20 mtrs and above, use material Mix 61 (nickel-zinc-iron mix).

    Note that properties of ferrite cores may vary as much as 30% from the nominal values in the data sheets! Also, there are not homogeneity specs for ferrite material, and hot-spots may occur at power levels below the maximum.

    Obviously, the ferrite core must be large enough for the ring to be slid over the loop tubing and accommodate the required number of secondary turns. More importantly, ferrite RF transformers must be operated at a core flux-density level that is commensurate with the volume and cross-sectional area of the ferrite ring. Conversely, the core dimensions should be adequate for the power level. The maximum flux level is driven by the loss tangent (dissipation hysteresis loss factor) of the ferrite mix. If that flux density limit is exceeded,  a runaway effect causes the core temperature to rise very quickly and ultimately (and possibly violently) destroy the core! Note that mix 61 has a Curie temperature (above which the ferrite properties are destroyed) that is much higher than that of type 43: 350 °C (660 °F ) vs. 150 °C (300 °F). Cores can be stacked to increase power handling capability. However, stacking cores also increases the total inductance of the transformer. Furthermore, a larger core also results in larger inductance, compared to a smaller core of the same material. E.g., a T-140-43 toroid (1.4 inch outer diameter, material type 43) has a slightly lower AL value ( inductance in μH per 1000 turns) than an FT-240-43 (2.4 inch OD): 885 vs. 1075. Experiment! Very small cores such as T-82- or T-130- are basically limited to QRP operation.

    As it is a 1:N transformer for voltage and current, N (the number of secondary turns) has to be chosen such that 50 / N2 = impedance of the loop at the point where the transformer is installed on the loop. N is typically determined empirically, by trial-and-error: start with a number that is too  high, measure SWR at resonance, then reduce by one or two turns at a time. In a small transmitting loop, the current is basically constant around the loop circumference. This is illustrated in the introduction section at the top of this page. So it does not make much of a difference where the transformer is placed around the loop. However, if the loop size is increased to, say 0.2 - 0.25 λ, the loop is no longer "small", and the current through the capacitor is significantly smaller than the current at the point opposite the capacitor. This means that the coupling with a ferrite core transformer then does depend on where the transformer is placed along the loop. The turns of the secondary winding should be spread out evenly around the ferrite ring, to minimize parasitic capacitance.

    One of my first experiments with the transformer coupling was with an 1:1 transformer comprising an T-140-43 ferrite core and a single-turn coax loop. See the figure below. This configuration puts the 50 ohm impedance of the coax feed line in series with the very small loop impedance. This results in significant mismatch. I tried this, and found a low SWR over the entire frequency range of interest, but a bandwidth that was at least an order of magnitude larger than when using multiple wire windings. Still to be explained...

    Mag Loop

    1:1 ferrite transformer-coupling with coax loop as secondary winding


    Mag Loop

    1:N transformer coupling with a ferrite core


    The two graphs below show my measurements for two of my STLs, with ferrite material mix nr. 43 and 31 transformer cores:

    Mag Loop

    SWR plot of my first STL antenna (80-20), with a ferrite transformer core FT-140-43


    Mag Loop

    SWR plot of my third STL antenna (40-10), with ferrite transformer cores FT-140-43 and FT-240-31


    Lásló Rusvai (DL2JTE/HA7HN) has done extensive testing with the transformer coupling (ref. 6C/D). One of his initial loops has a diameter of 1.2 m (4 ft) and is made of 20 mm (3/4") OD copper tubing. Using a T200-2 iron powder core and 2 secondary turns, he obtained SWR = 1.01 over a frequency range of 3.5 - 10.1 MHz. He also confirmed that with an STL antenna, the position of the transformer along the loop circumference makes absolutely no difference. An other 80-and-up loop that he tested, has a diameter of nearly 3 m (10 ft) and is made of thin copper wire (0.4 mm Ø, AWG #26). With a single ferrite core, he could not get SWR below 1.2. He obtained wide-band coupling (SWR < 1.1) with a stack of 9 ferrite cores of type T-240-61 cores (size FT-140 OK when not QRO). Eight of the cores are tightly stacked on the loop, the 9th core is only on the two secondary turns. See the diagram below. Note that he furthermore attaches a dipole across the tuning capacitor.

    Mag Loop

    Transformer-coupling per Lásló (DL2JT/HA7HN)

    (source: ref. 6C/D)

    Another variation on the toroidal transformer coupling is using a small number of primary windings, instead of just a single one. I.e., an N:M transformer. This requires the loop to be opened and the primary windings to be connected across the gap. For a loop made of copper tubing, the transition to wiring may not be great. But I have no experience with this, nor references regarding its performance. Joe (W9SCXH) used 2 primary and 5 secondary turns on a small ( = QRP) T-50-2 (iron powder) core in his 30-15 mtrs square wire loop (ref. 6F).

    Mag Loop

    N:M transformer coupling with a ferrite core


    AUTO-TRANSFORMER COUPLING (GAMMA MATCH, ETC.)

    Recall the voltage and current distribution of an STL antenna, as discussed at the top of this page:

    Mag Loop

    Voltage and current distribution of an STL antenna


    Clearly, the voltage distribution is symmetrical with respect to the neutral point (V = 0) that is located opposite the tuning capacitor. In an STL antenna, the current distribution is basically constant. Resistance (impedance) is voltage divided by current. Hence, an STL has a resistance "distribution" that looks like the voltage distribution. The neutral point is a convenient reference point. If we move along the loop circumference, away from that reference point, we will find a point at which the resistance is 25 Ω with respect to the reference point. There is a similar 25 Ω point on the opposite side of the reference point, at the same distance from that point. Moving further away, we will find a symmetrical pair of 50 Ω points. This (admittedly simplistic) description suggests some simple methods for coupling the loop to an asymmetrical/unbalanced feedline (i.e., coax) or to a symmetrical/balanced feedline (twin-lead, ladder line).

    When using a coax cable as feedline, we need an asymmetrical tap on the loop. The shield of the coax is connected to the neutral point of the loop. The conductor of the coax is connected to a so-called Gamma Rod. The rod is installed parallel to the loop. At some distance from the neutral point, the rod is connected to the loop. The tap is typically made adjustable, to be able to tune the effective length of the rod. This method also does not have the operating power limitations that are typically inherent to components of the transformer and capacitive coupling methods. This coupling method is wide-band: reportedly as much as 10:1, if the antenna installed sufficiently clear (15-20 ft, 5-6 m) from any objects and at least 1/2 loop diameter above ground). but the exact location of the tap point does depend on the frequency.

    Some notes:

    • The Gamma Rod adds inductance to the coupling. In a Gamma Match coupling, there normally is a variable capacitor in series with the rod, to cancel out that inductance. Ref. 6G/H/I.
    • As the Gamma Rod configuration is asymmetrical, the radiation pattern is slightly skewed, causing a front-to-back ratio that slightly favors the direction of the Gamma Rod  mount.
    • Contrary to the inductive coupling and transformer coupling methods discussed above, this coupling is galvanically connected to the antenna loop.

    Mag Loop

    In my first loop, I decided to insert a copper T-piece at the neutral point, just in case I ever wanted to play with a Gamma Rod. The T-piece is for 16 mm OD copper tubing (my loop), whereas the side connection is for 10 mm OD copper tubing. The latter is perfect for a female BNC chassis-mount jack. I drilled a hole opposite the BNC connector. A 1 m (3ft) section of heavy, insulated  household  installation wire is soldered to the BNC connector and passed through the hole that I drilled. That serves as Gamma Rod. A hose clamp (UK: "jubilee clip") can be used to fix the end of the wire in place at the tap point.

    Mag Loop

    Instructions for adjusting/tuning a Gamma Rod/Match are deceivingly simple:

    "Change the size, shape, material, position with respect to the loop, and the tap point of the Gamma Rod
    along the loop, until the desired impedance matching is obtained"

    This is not all that surprising, as the position tap point depends on characteristics of the Rod (length of the bar/wire/tubing, diameter of the rod, shape of the loop formed by the rod and the loop, center-to-center spacing between the Rod and the loop, etc.; see ref. 6H/I). It also depends on the loop and its construction. In general, the lower the Q of the loop is (e.g., due to losses in solder joints), the farther away from the neutral point the tap point will be. Also: the higher the Q, the more sensitive the position of the tap point will be: moving the tap just a couple of mm (≈ 1/8 inch) may make quite a difference!

    This basically means that finding the "sweet spot" for the tap point is pretty much 100% empirical. This is why there appear to be as many settings as there are antenna builders, and settings vary widely. Here are some examples that I have collected from designs posted on the internet (only very few indicate sufficient details to reconstruct the actual design):

    • Some literature suggests the tap point at "main loop circumference / 10" from the center point, and the rod at a distance of "main loop circumference / 200".
    • Tap point at "loop circumference divided by 15.8" from center point; rod is 1/4" diam. copper tube, 2⅜" (6 cm) distance from the loop(diam. 3½ ft); started half-way up the loop (i.e., 1/4 circumference from the neutral point), final tap at 8.375" (≈ 21 cm).
    • Tap point at "loop circumference divided by 10" from the neutral point; rod at distance of 0.5% λ from the loop.
    • Tap point at "loop circumference divided by 10" from the neutral point; rod at distance of 20 cm (8") from the loop. Loop circumference 2.4m (8 ft), rod length 23 cm (10"); 20m loop.
    • Tap point at "loop circumference divided by 8" from the neutral point.
    • Tap point at "loop circumference divided by 11.4" from the neutral point ; rod at distance of 7.6 cm (3") from the loop with 20 ft (6 m) circumference..
    • Tap point at "loop circumference divided by 7" from the neutral point; rod is 12" of 1/8" wire, spaced 1" (2.5 cm) from the loop made of 5/16" (8 mm) copper tubing.
    • Tap point at "loop circumference divided by 4.3" from the neutral point.
    • Tap point at "loop circumference divided by 10" from the neutral point; rod is 12" log, parallel to main loop at 1" distance
    • Tap point at "loop circumference divided by 4" from the neutral point; rod is 9"
    • Loop diameter 1 meter, rod length 31 cm, rod spacing 11 cm
    • Tap point at "loop circumference divided by 10" from the neutral point. Loop circumference 4m (13 ft), rod of 8 mm Ø copper tubing, parallel to main loop at 8 cm (3.25") distance.

    The Gamma Rod construction itself can also be considered as a kind of loop. If the end of tap point is chosen relatively close to center point (where the coax braid is attached) but we retain the size (area) of the loop, we end up with the Hairpin (stub) Match (a.k.a. Beta Match).

    Mag Loop

    Yet an other variation is the "Twisted" Gamma Match (a.k.a. "Mu-Gamma" or "G3LHZ-Gamma", ref. 3B (pp. 12, 13, 20), 6J). I have no suggestions regarding the total length of the wire, and pitch of the windings.

    Mag Loop

    If a Gamma Rod is installed on both sides of the neutral point, we have a T-Match It can be used with a 2-wire feedline.

    Mag Loop

    The T-match can also be used in combination with an N:M transformer, to connect to a coax cable:


    Mag Loop

    MY FIRST SMALL TRANSMITTING LOOP

    As with all antennas, the efficiency depends on the radiation resistance. For an STL, the radiation resistance at a given frequency  is proportional to the square of the surface area. So, bigger is better. For a given circumference ( = total length of copper tubing), a circular loop has the largest surface area of all shapes. However, I have no access to a tube/pipe bender, and annealed (heat treated) copper tubing is quite hard and stiff. So I decided to build an octagonal loop instead of a circular loop. But as  derived below, a circular loop has a surface area that is only about 5% larger than an octagonal loop with the same circumference.

    For a circle with radius R and diameter D:

    Mag Loop

    For an octagon with side L:

    Mag Loop

    After some basic manipulations, we can derive that for equal circumferences ( = total length of the copper tubing), the circular and octagonal loops basically have the same surface area:

    Mag Loop

    Note that the radiation resistance of an STL increases with the square of the loop area surface. For the same circumference, a round loop has a radiation resistance that is 1.0552 = 11% larger ( = better) than the octagon!

    However, that is not the entire story. Clearly, maximizing the surface area is rather important. Typically, we have room for a "loop" with a certain width and height. Let's take the simple case where "maximum width" and "maximum height" are the same. In this case, a square loop will have the largest possible surface area. Obviously this is not the shape with the smallest circumference - that would be a round loop. However, a square with a standard construction has soldered, braised or welded elbow-joints at the four corners, which may introduce loss resistance that a single-piece round loop does not have. For a given width = height = D, and all else remaining equal, we obtain the following surface areas and relative radiation resistances.

    Mag Loop

    Based on that, the square loop would have the largest radiation resistance (but the loss resistance mentioned above does factor into effciency...). Just to keep in mind.

    Anyway, I decided to make a loop with a circumference of about 5 mtrs (16 ft). The resulting octagon is then 1.5 mtrs tall and wide (5 ft). This size is quite manageable, but the circumference is sub-optimal for 80 mtrs: only about 0.06 λ. Note that the connections between the loop and the capacitor increases the circumference, but hardly the loop's surface area. The cross-shaped support is made of standard PVC tubing. The "mast" fits in my heavy cast-iron umbrella stand.

    Mag Loop

    The construction concept of my first STL antenna - 1.5 m (5 ft) high & wide


    An octagonal loop requires nine sections of straight copper tubing. They are connected with copper elbow-pieces - no bending required. Note: industry standard is to refer to the outer diameter when talking about tubing, and the inner diameter when referring to a pipe. Just so you know, hihi.

    Mag Loop

    The "plumbing" components of my STL antenna (tubing, elbow pieces, T-piece) and a cutting tool 


    Here are the copper components of this loop (all European standard 16 mm outer diameter (OD), ≈ 5/8 ich):

    • 7 sections of copper tubing, each 62.5 cm (24.6") in length
    • 2 sections of tubing, each 29 cm (11.4") in length
    • 8 elbow pieces, 45º, female-to-female, for 16 mm OD tubing
    • 2 elbow pieces, 90º, female-to-male, for 16 mm OD tubing
    • 2 reduction pieces, from 16 mm to 10 mm OD (to connect tube to braid to capacitor)
    • 1 copper T-piece,2 x 16 mm ID, 1x 10 mm ID (for Gamma Rod coupling as described above)

    Mag Loop

    Terminating of the ends of the loop, for connection to the capacitor (below)

    ("spark" gap between the elbow pieces above must have at least the same voltage rating as the capacitor: here: 10 kV)

    Components for connecting the tuning capacitor to the loop:

    • 2 stainless steel hose clamps (UK: jubilee clips), large enough for the end-caps of my vacuum capacitor (6 cm OD, 2.4")
    • 2 x 25 cm (10") thick & wide copper braid (also available from automotive supply store, as ground strap for car batteries). Alternatives: silver-plated 2-layer braid from large-diameter coax, or heavy multi-strand copper wire (e.g., AWG #4)

    Mag Loop

    Heavy multi-strand wire and hose clamps for connecting the loop to the capacitor


    Components for the mounting plate of the capacitor:

    • 10x12 cm (4x5")polyethylene cutting board, 8 mm (5/16") thick - from the kitchen.
    • 2 bolts, M6, stainless (long enough to pass through the board +  2mm thickness of the 63 mm OD PVC + lock nut).
    • 2 washer,6 mm ID.
    • 2 self-locking nuts, M6, stainless.
    • 4 large tie-wraps (cable ties). For some reason, black ones (tie-wraps that is), generally hold up better in sunlight than white ones...

    Mag Loop

    The components of the mounting plate for the vacuum capacitor


    The vacuum capacitor "bottle" is not a cylinder. I used a grinding bit to carve out recesses in the cutting board, for the shape of the "bottle". I also cut  2 x 2 slits in the board, to pass the tie-wraps through the board. Well, I actually drilled a series small holes for each slit. Each pair is spaced less than the width of the capacitor (10 cm), to be able to get the tie-wraps to pull the bottle tighter onto the board.

    Mag Loop

    The components of the mounting plate for the vacuum capacitor


    Components for the mast and the cross-braces:

    • 2 mtr (6.6 ft) PVC tubing, 63 mm OD (2.5") - mast
    • 1.75 mtr (5.7 ft) PVC tubing, 32 mm diameter OD (1.25") - main cross-brace
    • 2 sections of 40 cm (16") PVC tubing, 32 mm diameter OD (1.25") - top & bottom supports
    • 6 snap-in clamps for 14 mm OD tubing (yes, tighter than the 16 mm OD of the copper)
    • 6 M6x45 bolts for the clamps (long enough to pass through the 32 mm OD PVC tubing and into the nut of the clamp)

    Mag Loop

    One of the six tube clamps


    Initially, I tried to braze the copper elbow pieces to the straight copper tubing with a household propane/butane blowtorch and plumber's silver solder. Such a blowtorch just doesn't generate enough concentrated heat. So I took my pieces to a friendly neighborhood plumber, who used his oxy-acetylene blowtorch. Much better! I did do some pre-planning, and put the roof rack on the car, to bring the assembled loop back home!

    Mag Loop

    Mag Loop

    The back side of the capacitor mounting

    (the hole in the mast is for inserting a socket wrench for tightening the nut on the bottom bolt of the capacitor mounting board)


    Mag Loop

    Close-up of the capacitor connection wire, brazed to a copper reduction piece on the loop-ends


    Mag Loop

    Close-up of the hose-clamp with the heavy wire brazed onto it


    Mag Loop

    Commercially produced mounting clamps for a vacuum capacitor


    Mag Loop

    The vacuum capacitor mounted at the top of the mast


    Mag Loop

    My first STL, erected on my terrace. Beautiful at any time of day or night, hihi


    Mag Loop

    Another picture of this STL.

    (it's  the umbrella stand that is tilted, not my STL. I finally took the grinder and fixed that late 2015)


    Mag Loop

    My miniVNA - a tiny antenna analyzer for 0.1-180 MHz, with USB connection to a PC


    As I had several FT-140-43 ferrite cores in stock, that is what I used. These cores have an outer diameter (OD) of 1.40" and an inner diameter of 0.9" (≈ 23 mm). This is large enough to slide over a tube with 16 mm (5/8") OD, and still have room for about 16 windings of insulated heavy installation wire of 1.5 mm2 (AWG 14-16). The G4FGQ calculator (ref. 2D) predicts that my loop would require 24 secondary windings at 3.5 MHz, and 8 at 14.230 MHz - for a ferrite core of "suitable grade". K3JLS (ref. 6E) uses 3 turns of 14 AWG enameled wire on an FT-240-43 core for his 40-20m loop. AA5TB (ref. 8A) used 2 turns on his 30 m loop.

    Mag Loop

    Coupling transformer: FT-140-43 ferrite core with 8 & 14 secondary turns, antenna 80 cm (2.5 ft above ground)


    The above plots suggest that workable SWR ( < 1.5) can be obtained over a 2+:1 frequency range. However, I'd like to have 4:1, to cover 80 - 20 mtrs...

    The curve below shows that for maximum capacitance (500 pF), the resonance frequency is 3064 kHz; with minimum capacitance (15 pF) it is around 15.8 MHz. This range covers 80-20 mtrs and is larger than what the various calculators estimated - suits me fine! Note that the connections between the loop and the tuning capacitor do add to the size of the loop.

    Mag Loop

    Coupling transformer: FT-140-43 ferrite core  - same curve for 8 & 14 secondary turns


    As the resonant loop is an LC-circuit, the resonance frequency varies with the square-root of the tuning capacitor's value. The plot below shows that towards minimum capacitance, the capacitance does not vary linearly with the capacitor's shaft position.

    Mag Loop

    Non-linear change in resonance frequency vs. varco shaft position - coupling with FT-140-43 ferrite core


    The "Q" (Quality) factor depends inversely on the bandwidth. It is a measure for how lossy the resonant circuit is: peak energy stored in the circuit, divided by the average energy that is dissipated per cycle, in the circuit at resonance. This can be expressed as:

    Mag Loop

    where BW is the normalized bandwidth for a given SWR (referenced to SWR=1 at fres). The plot below shows both bandwidth and Q for the ferrite transformer coupling with 14 secondary windings. The bandwidth varies from 6.8 kHz around 3 MHz, to 50 kHz around 15 MHz. The associated Q varies from 450 to 300, with a maximum of 600 around 5 MHz.

    Mag Loop

    Bandwidth & Q - transformer coupling with FT-140-43 core and 14 secondary turns


    I built this STL primarily for DX on 80 mtrs. To test antennas by myself, I typically use remote receivers on the internet: Web-SDRs. The screenshots of the waterfall display of a Web-SDR in The Netherlands (my QTH is in the south of France) clearly showed my signal:

    Mag Loop

    My carrier, visible (with some fading) in the waterfall display of a Web-SDR 80 at a distance of 1000 km (600 miles)

    (19-Oct-2010 ,19:00 local time,80 watts, 3577 kHz, 2x7 m dipole @ 2.5 m above ground)

    Mag Loop

    Same conditions as above, but now sending a series of "E" characters in Hellschreiber mode


    The Web-SDRs have audio. So, when operating in a digital mode, one can print his own signals:

    Mag Loop

    My Hellschreiber signal, received on 80 mtrs by a Web-SDR receiver at a distance of 1000 km (600 miles)

    (31-Oct-2010 ,17:00 local time, 80 watts; my signal received at the SDR-RX is in the magenta boxes)

    In the above tests, the plane of the loop (not the opening of the loop!) was pointing at the remote receiver. When I turned the antenna 90 degrees, the S-meter of that receiver went down by roughly 2 points (12 dB). In November of 2010, I did some comparative receive tests with the loop and my short "Cobra" dipole (2x7 m). A coax relay allowed quick A-B switching. The loop was noticeably quieter than that dipole, and a couple of S-point stronger. I also ran some tests on 40 mtrs with my dear friend Rolf, DF7XH, at a distance of 750 km (465 miles). With all my other antennas (short dipoles and short verticals), we only have marginal communication at best. This time it was FB and 59+ in both directions.

    I also did a quick experiment by installing the loop horizontally. It appeared rather "deaf" on 80 mtrs, since it is installed at only 2 mtrs ( = 0.025 λ) above ground, and the ground is "poor" (concrete). As I am not interested in local QSOs, I did not pursue this.

    Mag Loop

    My STL, installed horizontally


    The mast of my STL is installed on top of another PVC mast with a PVC T-piece. I cut a slit into the T-piece, so it can be clipped onto the STL mast and still hold tightly, without needing to glue anything.

    Mag Loop

    The modified PVC T-piece


    MY SECOND SMALL TRANSMITTING LOOP

    Some "lessons learnt" from my first loop:

    • Reduce the losses in the loop by reducing the number of joints: bend long copper tubing into a circular or octagonal.
    • Use a different method to connect the ends of the loop to the vacuum capacitor:
    • After about a year and half after construction, the total DC-resistance of the copper part of the loop has not changed: still at 3.2 milliohm (measured with an HP4328A professional milliohm meter). I realize that this says nothing about RF losses. However, the resistance between the copper wire and the stainless steel hose clamps had increased to a little over 4 milliohms - per clamp! This kills the efficiency of the antenna. All loop calculators (ref. 2) will quickly show this, and I had already noticed a decline in performance over time.
    • As I am primarily interested in using this antenna for DX on 80 m, or 80-40:
    • Increase the loop circumference from 5 to about 7 m (16 to 23 ft). I.e., from 0.06 λ to almost 0.09 λ on 80 mtrs. This is still well  below the optimum 0.15 λ, but on 80 mtrs that optimum implies a diameter of 4 m (13 ft)! The increased size  will double the area of the loop, and should more than double the efficiency of the antenna on 80 m!
    • Try a Gamma Rod coupling, or change over to ferrite rings made of material type 31. This should be better than type 43 material for frequencies below 10 MHz.
    • Simplify the attachment of the vacuum capacitor to the mast.

    Obviously, I had to make an new loop and mast - which is what I did late 2012. Don't make the mistake to assemble a loop of this size inside the house: it probably will not fit through a regular door. Don't paint yourself into a corner, hihi.

    Mag Loop

    My is second loop is (nearly) circular. I had my copper tubing bent by local company that makes railings for staircases and balconies. However, one can home-build a tube bender:

    Mag Loop

    A tube bender built by Roger Dunn (VK4ZL)

    (description: ref. 10; photos and image used with permission)

    Mag Loop

    Mag Loop

    A sturdy tube bender made by Twan van Gestel (PA0KV)

    (photos used with permission; his large loop with motorized vacuum capacitor is described on his website [pdf])

    Mag Loop

    An adjustable tube bender that I made for my third (smaller) STL, made of 12 mm (0.5") soft copper tubing


    I made clamps for the vacuum capacitor out of soft copper strip, about 2-3 cm wide (≈1") and 2-3 mm thick (≈0.1"). I have toyed with the idea of silver plating the copper loop and clamps to further reduce RF loss resistance (ref. 9A), but that may not be worth the effort (see half way down the page of ref. 9B). The clamps are dimensioned such that the inner circumference is just about 1-2 mm too small for the end-caps of the capacitor. This way, when I tighten the bolt of the clamp, it is nice and tight. I used stainless steel bolts and a heavy stainless washer on both side of the clamp. I squared the washers to make them fit better, and also to make them touch the full width of the circular part of the clamp. I (carefully) pinched the ends of the copper loop with a pair of vise-grip™ (locking) pliers.

    Mag Loop

    The "bottle" of the vacuum capacitor is now attached directly to the mast, with two large tie-wraps. With my first STL, the tie-wraps were passed through slits in the mounting board. Here, they are passed through slits in the PVC mast. The tie-wraps do not full immobilize the capacitor. However, once the ends of the copper loop are attached to the clamps, the installation is quite stable.

    Mag Loop

    The capacitor, attached to the mast and connected to the loop


    I finished building the loop in January of 2013, and took some measurements with my miniVNA analyzer. I used an FT-240-31 ferrite ring for coupling. The first measurement, with a single secondary winding (just a wire stuck once through the ferrite ring), showed an impedance of about 10-12 ohms. So, I needed a 4:1 transformation ratio to get close to 50 ohms. I.e., a 2:1 current transformer. So I doubled the number of secondary turns to 2. I also added a 1:1 current choke right at the coupling transformer. The plots confirm the suitability of type 31 ferrite material for the lower frequencies.

    Mag Loop

    Coupling transformer: FT240-31 ferrite core with 2 secondary turns, 1:1 current choke at feedpoint


    Mag Loop

    Coupling transformer: FT240-31 ferrite core with 2 secondary turns, 1:1 current choke at feedpoint


    Mag Loop

    Coupling transformer: FT240-31 ferrite core with 2 secondary turns,1:1 current choke at feedpoint


    As illustrated in the introduction section, the current distribution around an STL is fairly constant. I confirmed this by taking SWR measurements at several positions around the loop:

    Mag Loop

    Current is nearly constant around the circumference of an STL

    (transformer: 2 secondary turns on FT-240-31 core, 3600 kHz,)


    MOTOR DRIVE FOR THE VACUUM CAPACITOR

    My loops are installed on the terrace of my penthouse apartment, so they are quite accessible. Even so, it is entirely impractical having to go outside several times to manually adjust the capacitor position when changing operating frequency, or when the resonance frequency drifts away when the sun heats up the loop. Standing next to the loop also de-tunes it a bit. The loop has a very narrow bandwidth, esp. on 80 m. A remote-controlled motor-drive for the capacitor is a must!

    Before I get into all the details of the motor-drive that I developed for my vacuum capacitor, here is a simple-yet-effective way to motorize such a capacitor - if the shaft of the capacitor moves in & out of the capacitor as the shaft is turned. Unfortunately, this is not the case with my capacitor.

    If the shaft does move out when the shaft is unscrewed, then an inexpensive small DC-motor with down-gearing can be used. If mounted on a thin, flexible L-bracket, the motor (and the bracket) will be pushed away from the capacitor when the shaft unscrews. This can be used to actuate a micro-switch when the shaft is approaching its maximum position. With some simple circuitry, the motor will then only be allowed to reverse direction. The geared-down motor can produce a certain maximum torque. It should be small enough, such that it cannot damage the capacitor when the shaft is completely screwed in. The motor will simply stall at that point. This is easily detected with a simple motor-current monitor, consisting of an LED across a current-sensing resistor in series with the supply voltage. Ref. 11A.

    Mag Loop

    Motor-drive with end-stop protection by Rich Fusinski (K8NDS)

    (source: ref. 11A)

    This concept can actually be expanded to a provide end-stop protection for a capacitor shaft that does not move in & out. The rotational movement of the motor-capacitor shaft has to be converted to linear motion. This can be done with a threaded rod (lead screw, feed screw) and a screw nut that is installed on the rod. It has to be prevented from turning with the shaft, and only be allowed to slide along the rod. The nut can then actuate a micro switch (or two such switches, to obtain end-stop protection at both ends of the motion range). An implementation of this is illustrated below. The design includes a remote control unit that uses a 10-turn potentiometer (down-geared) for position feedback.

    Mag Loop

    Top view & side view of a motor-drive by Dominique Delerablee (F1FRV)

    (source: ref. 12F)

    When I built my first STL, I could not figure out an easy way to motorize the vacuum capacitor with a DC-motor, while providing end-stop protection at both ends of the motion range of the shaft (36 revs). So, why not make a little science project out of it?

    Primary parameters for the motor-drive are:

    • required minimum torque at the capacitor shaft,
    • required minimum angular resolution, and
    • drive speed.

    Note that "precision" and "accuracy" are not on this list. I am particularly interested in the ability of the drive-system to move exactly to some (pre-)selected position, or exactly follow some predefined acceleration and speed profile. Depending on the outside temperature, the alignment of the moon, planets and the stars, etc., the exact capacitor shaft position for a given resonance frequency will vary. So, one will have to search around a bit anyway, for fine-tuning. It is important, however, to change the position just a tad.

    The first design parameter for the motor-drive is the torque required to overcome the stiction (static friction), and turn the shaft of the variable capacitor. This drives the size of the motor and reduction gear (if required). Variable vacuum capacitors have a torque value that depends on the position of the capacitor (mid-range vs. close to the end-stops), and the direction (towards or away from an end-stop). I do not have the data sheet of my Russian capacitor. To get an order-of-magnitude idea, I checked the values for a comparable capacitor (25-500 pF, 10 kV test, 9 inch length) manufactured by Jennings: 6 inch-pound (in.lb) or 6 x 0.113 ≈ 0.68 Nm = 68 Ncm.

    I then decided to measure it myself ("trust, but verify!"). This is actually quite easy to do! I clamped a standard 30 cm (1 ft) ruler onto the shaft of the capacitor with a small C-clamp. Pushing slowly down onto a kitchen scale until the shaft barely turns, and read the "weight". Voilà. See photo below. The force was applied to the shaft with half of the ruler, i.e., an arm of 15 cm.

    Mag Loop

    Determining the torque values of my capacitor


    Here are the measurement results:

    • Depending on the turn-direction, I measured about 80 to 100 grams at positions up to mid-range (starting at minimum capacitance). So, the applied torque was (0.1 kg x 9.8) x 0.15 m ≈ 0.15 N.m = 15 N.cm (≈ 21 oz.in).
    • Somewhere mid-range, it became harder to turn the shaft, and I needed to apply about 140 gram, i.e., 20.6 N.cm (≈ 29 oz.in).
    • I needed about 300 gr to get completely to the opposite end (maximum capacitance), i.e., 44.1 N.cm (≈ 63 oz.in).
    • I cranked it up to 1000 gr without breaking anything, i.e., 150 N.cm (≈ 208 oz.in). If the motor-drive (motor + gearing) delivers less than this, I do not have to worry about not having end-stop protection. I decided to not measure the torque required to go beyond the end-stop of the capacitor, hihi.

    The second important design parameter is the angular resolution of the motor-drive. The loop antenna has a large Q, or - equivalently - a very narrow bandwidth. The motor-drive must be able to make angular displacements that are small enough, such that the associated capacitance change does not change the resonance frequency more than a fraction of the bandwidth. Otherwise it will be next to impossible to tune the resonance frequency close enough to the desired operating frequency.

    Let's simply assume that the capacitance changes linearly with rotation of the capacitor's shaft (which is actually only true for about 2/3 of the motion range). Then we get 500 pF / (36 rev x 360º per rev) ≈ 0.04 pF / degree.  For my first STL, one of the loop calculators (ref. 2B) suggest the following:

    In the middle of the 80 m band:

    • Calculated bandwidth is about 3.5 kHz. I actually measured 4.6 kHz for my loop. The difference is probably because I did not enter a value for additional loss resistance in the calculator...
    • A capacitance change of 1 pF results in a calculated  change in resonance frequency of 4.2 kHz. I.e., 0.24 pF per kHz.

    At the high end of the 20 m band:

    • Calculated bandwidth is about 52 kHz. I actually measured 61 kHz.
    • A capacitance change of 1 pF results in a calculated change in resonance frequency of 275 kHz. I.e., only 0.004 pF per kHz.

    Clearly, variation around the minimum capacitance (highest frequency) is the critical case!

    Let's assume that practical tuning requires changing the resonance frequency with a resolution that is better than 20% of the bandwidth. The above data implies a required resolution of better than 20% x 52 kHz = 10.4 kHz. That is: 10.4 kHz  / 275 kHz/pF = 0.038 pF! Based on the 0.04 pF / degree change in capacitance as estimated (assumed) above, I need an angular positioning resolution of better than 0.038 pF / 0.04 pF/deg = 0.95 degree.

    Note that an air variable capacitor goes through its capacitance range in a single revolution of the capacitor shaft. For multi-band tuning (large capacitor value), this implies a positioning resolution that is at least an order of magnitude better than what is needed for a multi-turn (10-40 turns) vacuum variable capacitor!

    A secondary design parameter is the minimum drive speed. We don't want to wait an hour for the capacitor position to move from min to max value, or vice versa. My capacitor requires 36 turns for this min-max range, which should cover the 80-20 m bands. If I could live with 1 minute, that would be 36 rpm at the capacitor shaft = 0.6 rev/sec.

    Now we can choose a motor and associated drive electronics. Gearing must be added, as necessary for torque, speed, and/or position resolution. There are two basic options:

    • Stepper-motor,
    • DC-motor with gearing + position feedback (unless you just want to move the motor while observing the SWR or antenna impedance and don't care about the motor position). If the DC motor is not a brushless type, then (as a minimum) a noise suppression capacitor must be installed across the motor wires. Otherwise the brushes will generate electrical noise when tuning the antenna in receiver mode.

    Open-loop control of a DC motor is simple. Apply DC power with the correct polarity, and turn of that power when at the target position. Speed can be controlled (again: open-loop control without position feedback, no speed regulator) with a cheap and simple Pulse Width Modulator (PWM) circuit, such as I used for my third STL. Small DC-motors with large down-gearing are relatively inexpensive.

    Stepper motors do not have built-in position feedback, but their movement is deterministic, as long as the motor does not stall or lose sync. Their control/driver electronics are more complicated than what is needed for DC-motors. Positioning accuracy and torque requirements are easily met with a stepper-motor: they have a specified torque and step size. Stepper control electronics often have half-stepping capability (though this typically reduces available torque by about 30%). Common step sizes are 1.2, 1.8, 3.6, 7.5, and 15 degrees. I.e., 300, 200, 100, 48, and 24 steps per revolution, respectively. Smaller step sizes do exist, e.g., 0.9 and even 0.36 deg, but at a cost...

    When one of my colleagues donated a stepper-motor (thank you Helmut!), I decided to throw all caution to the wind, and go with that. It is an old Slo-Syn SS25-1001. This is a 5-wire brushless permanent magnet inductor motor that can be operated as a constant-speed AC synchronous motor, and as a 1.8º uni-polar DC stepper motor. As I needed better than 0.95 deg positioning resolution, at least 2:1 gearing is required.

    Mag Loop

    The Slo-Syn SS25-1001 motor


    "SS25" stands for "Standard Slo-Syn" with 25 oz.in (17.7 N.cm) torque at 72 rpm (120 Vac, 60 Hz). However, as a stepper motor, it has different torque ratings:

    Mag Loop

    Specification of the Slo-Syn SS25 stepper motor


    There are several kinds of stepper-motor torque to consider:

    • holding torque (a.k.a. break-away torque): the amount of torque required to break the shaft away from its holding position, with motor at standstill and coil(s) energized with rated current & voltage.
    • pull-in torque: max torque at a given speed, for stopping/reversing without losing sync.
    • pull-out torque: max torque at a given speed, without losing sync or stalling.
    • residual torque (a.k.a. detent torque): torque produced by the motor's permanent magnets, when no coils are energized.

    The holding torque and residual torque are not interesting for my application, as the motor will not be holding a load. Of interest are the pull-in and pull-out torque, typically provided as a torque vs. speed curve. The curves are highly dependent on the type of motor-driver that is used.

    Mag Loop

    Typical shape of the torque curves


    I do not have the torque curves for this motor, but typically it appears to be about a factor three smaller than the holding torque. That would imply a torque of about 10 oz.in (7 N.cm). Less than half of what I need! But why not determine the actually required torque, the same way I measured the required torque. With the motor energized, just make the "arm" push down on the scale until the motor turns.

    Mag Loop

    Determining the break-away torque value of my SS25 motor


    With my simplistic kitchen scale method, I measured a break-away torque of approximately 140 grams x 15 cm = 2100 g.cm = 20.6 N.cm = 29.2 oz.in. Almost exactly as specified! The same value is obtained by fixing the motor in place, and commanding it to turn, one step (or 1/2-step) at a time until it "pops". This very easy to do with the controller software I wrote (see further below).

    Keep in mind that I need at least 44 N.cm (≈65 oz.in). So I have to add down-gearing of at least 3:1.

    The SS25 is a 5-wire device. It has a common wire (white) and four coil wires (green, green/white, red, red/white, for coil 1-4). This corresponds to the connections "+", and A-B-C-D on the Phidgets motor controller card that I use.

    Mag Loop

    Wiring of the SS25


    We have a motor, so now we need to control it. I wanted to control the motor from my PC, rather than having a separate control box. This means that the controller hardware must have an interface to the PC. Standard options are an RS232 interface via a COM port, or - more modern - a USB interface. My PC only has one COM port, and that one is already used for the PTT-interface from the PC to my transceiver. Yes, I could add a USB-serial interface. But if I go USB, I might as well skip the RS232.

    The main choice to make now, is "make" vs. "buy". Yes, there are many stepper-motor controller hardware designs floating around in cyberspace. Few have a USB interface. I determined that piecing a design together, building and debugging it, was too much of a hassle. Instead, I searched for a relatively inexpensive off-the-shelf USB solution. I decided to go with a Phidgets 1062 controller card. It handles up to 4 unipolar stepper motors simultaneously (e.g., an antenna rotor as well). It is almost "plug-and-play", via USB. This controller card is really tiny: 5 x 6.3 cm (2 x 2½ ")! And: it is rated for 1 amp per winding, without a heatsink! It does come with some rudimentary software, to check out the card and the motor.

    Mag Loop

    The small USB controller board for four uni-polar stepper-motors


    The unipolar Phidgets card (model 1062) does not support speeds above 383 half-steps per sec! That is almost 1 rps with a 1.8 deg stepper motor (200 full steps/rev).

    This Phidgets card uses half-stepping: the drive alternates between "two phases energized" and "single phase energized". This provides smoother motion and doubles the angular resolution from 1.8º to 0.9º. However, when half-stepping, the motor also typically produces about 30% less torque (at the 1/2 step positions between full step positions). Maybe I will only get about 7 oz.in (5 N.cm) out of my SS25 motor! This means I will probably need a 4:1 gear ratio between the motor and the shaft of the variable capacitor...

    Phidgets also sells a controller card (model 1063) for a single bipolar motor. As the name suggest, control of bipolar stepper motors involves changing the polarity of the applied voltage across the motor windings. This makes bipolar controller hardware inherently more complicated (typically H-bridges instead of simple transistor switches). Yes, unipolar motors are very old-fashioned and generally produce less torque then bipolar/hybrid steppers. The latter can also be micro-stepped, whereas half-stepping appears to be the limit for unipolar motors. The bipolar controller card supports much higher speeds, and also has 4 discrete/digital inputs.

    The instruction set of the Phidgets 1063 card is a super-set of the 1062's instruction set. I.e., the 1063 has all functionality of the 1052 - and some additional functions. E.g., limiting the motor current (= torque). This means that the control software that I developed for the 1062 will also work with the 1063. Leslie, EI5GJB, has confirmed this (November 2011) and is quite pleased!

    Some other controller hardware options are:

    • The "Stepper-Bee" card.
    • The "Motor Hawk" card. Twan van Gestel (PA0KV) has made a big loop (160-40) with a Gamma match, and used one of these cards for a stepper motor in his 2015 design. He made nice controller software in Visual Basic. See here.

    Both come with more useful demo software than the Phidgets.

    External links last checked: January 2016


    The next step is choosing a mechanical coupling of the motor to the shaft of the variable capacitor, including the necessary down-gearing.

    Mag Loop

    Shaft dimensions of my capacitor and motor


    IMPORTANT: you need non-conductive material or rod to couple the motor to the capacitor. The capacitor shaft is not insulated from the capacitor itself. Hence, it is at the same potential as the capacitor (up to several kV at resonance). You don not want the capacitor voltage on the motor (or its wiring)! Standard options are using a non-conductive (plastic, ceramic) driveshaft or a belt drive. The shaft and housing of the motor, and any metal gear wheels attached to it, must remain at a safe distance (at least 1 cm (1/2") from the shaft and connections of the capacitor.

    I would have preferred a straight, rigid shaft-to-shaft coupling. But as as determined above, my motor doesn't generate enough torque for 1:1 coupling: I need down-gearing of at least 3:1. The easiest way to do this, is with pulleys (cog wheels) and a timing belt.

    A timing belt (a.k.a. toothed, notch, cog, synchronous belt; D: Zahnriemen, F: courroie dentée) has teeth that fit into a matching toothed pulley. When correctly tensioned, there is have no slippage: motor and load remain "synchronized". Timing belts need the least tension of all belts, and are among the most efficient (though no issue at very low speeds of a few RPM). Standard belts are fiberglass reinforced neoprene or polyester-urethane (PU). There are several standard belt profiles, but this is not critical in our low speed, low torque application. The basic choice was between a simple T (trapezoidal) profile with 2.5 mm pitch and 6 mm width, vs. 5 mm pitch and 10 mm width.


    Mag Loop

    Standard metric belt profiles (left to right: T, AT, HDT)

    (similar British/Imperial profiles are L, H, XL, MXL)

    There is a finite choice of standard pulleys. The standard number of "teeth" is typically 10-20, 22, 25, 28, 36, 40, 48, 60, 72, or 84. The diameter of the pulley is determined by this number, and the pitch of the belt (i.e., the distance between the centers of adjacent teeth). It is recommended that at least one of the two pulleys has flanges, to avoid the belt from running off the pulleys when the input and output shaft of the gear are not properly aligned. Standard materials are aluminium and plastic (typ. acetal resin). Pulleys for a T5 belt are significantly larger than for a T2.5 belt. Pulleys have standard bore sizes.

    Mag Loop

    Plastic flanged pulley


    Some considerations:

    • I did not want the pulley on the capacitor shaft to be larger than the end-connector of the capacitor (60 mm diameter).
    • I want to be able to create a 3:1, 4:1 or 5:1 gear ratio.
    • The diameter of the hub of the pulleys has to be large enough to increase the bore (with a drill press!) to the respective shaft size, and still have at least 2 mm hub thickness left.
    • The height of the hub has to be enough to allow drilling a radial hole, thread it, and use a set-screw (grub screw) to fix the pulley onto (or through) the shaft.

    I settled for a T2.5 x 6mm belt, a 60 teeth pulley (48 mm diam.) for the capacitor shaft, and a 15 teeth pulley for the motor. I.e., a 4:1 ratio (I also got a 10 teeth pulley, just in case I needed 5:1 gearing, but did not need it).

    Now we need to figure out the length of the belt with the formula below (it is a very close approximation, as it neglects the fact that the belt does not touch the pulley over only half its circumference, unless the pulleys have the same size):

    Mag Loop

    Mag Loop

    For the diameter of the selected pulleys, and a minimum of 2 cm spacing between the pulleys, I ended up with a standard belt with a 200 mm (8") overall length (80 teeth). I.e., a standard T2.5 x 6 x 200 belt.

    Mag Loop

    I used various paper disk "pulleys" on the motor and capacitor shaft to check dimensions and clearances


    I installed the motor onto the antenna mast with two "worm drive" hose clamps (a.k.a. radiator clamps; UK: "jubilee® clips").

    Mag Loop

    The pulleys and belt installed on the motor and capacitor

    (note the 5-turn ferrite toroid "choke" on the motor wiring)

    NOTE: I had to revise my choice of belt material! The original belt was reinforced with embedded steel tension cords. As you can see in the photos below, this caused arcing between the belt and the pulley of the motor. Luckily, no damage was done to the controller card, PC, or my transceiver. Clearly, one must use polyurethane or neoprene belts that are reinforced with fiberglass, polyester, or polyurethane cords.

    Mag Loop

    Arcing damage to the steel-reinforced belt


    Mag Loop

    Arcing damage to the pulley of the stepper-motor


    The Phidgets cards needs to be connected to the PC via a standard USB printer cable (supplied with the card). My motor happens to be a 5-wire motor (some unipolar stepper motors have more wires), so I need to run a cable with at least 5 conductors from the card to the motor. Some options are:

    • Standard Cat 5 (category 5) cable; this is for 10/100 Mbs Ethernet communication - no need to go for Cat5e or Cat6 cable (100/1000). This is an 8-conductor cable, usually 4 twisted-pairs. There are UTP (unshielded twisted pairs) and STP (shielded) cables. STP is recommended for the application at hand.
    • 5 conductor thermostat cable,
    • 5 or 7 conductor antenna rotor cable,
    • 6 or 8-wire phone cable.

    The advantage of an 8-conductor cable is that this leaves 3 conductors to accommodate a sensor at the motor drive, e.g., a potentiometer or end-stop switch. Of course, it can also accommodate an 8-wire stepper motor. As I had several long Cat5 cables laying around, I settled for one of 15 mtrs (50 ft). With two mating RJ45 chassis connectors (8P8C modular jacks), I'm in business.

    The controller card takes its power from the USB port, but only for the control electronics - not to power the motor! The latter power must be supplied separately to the card: either via a standard barrel connector, or hardwired to a terminal block. My motor uses 12 volt DC. I use the barrel connector and a 12 V / 750 mA "wall wart" power supply, or a sealed 12 V / 4 Ah motor cycle battery.

    IMPORTANT: As noted in the warning section above, the antenna generates strong a RF field when at resonance - enough to light up a fluorescent light tube, with just a couple of watts transmit power. You do not want to get this RF into the controller card and damage it, or into the PC connected to it.

    As for most of my HF-chokes, I use FT140-43 ferrite rings. One is placed at the controller card, between the RJ45 connector and the card. I use a short section of Cat 5 cable between the connector and the card. This cable is wound 5 times through the ferrite ring. This has been adequate so far (I use 100 W max).

    Mag Loop

    Toroidal current choke on the CAT5 cable between controller card and stepper-motor


    Mag Loop

    A second ferrite ring current choke is placed at the motor


    According to various loop antenna calculators, the highest capacitor voltage for my size antenna, occurs for a resonance frequency around 7 MHz. Running 100 W into the antenna - with the controller card operational - did not cause any damage or abnormal behavior.

    I may move the motor away from the capacitor, to the "neutral" point opposite the capacitor. This requires a long, torsionally-stiff drive shaft. I found very stiff green plastic rods of 1.8 m (6 ft) length and 16mm diameter in the gardening section of the local do-it-yourself store (thanks for the idea Mark, KF7KIN). Be careful: some of these green garden rods are just plastic-coated metal tubes or rods. It is not easy to tell! I ended up with a 1.8 m section of regular 16 mm PVC electrical conduit. It is flexible, but torsionally stiff.

    The bore of my large gearwheel is 12 mm, as is the diameter of the capacitor-shaft. Adapting the 16 mm rod to the 12 mm bore (inner diameter) is easy, with a 16-to-10 mm copper adapter piece. It has 1 wall-thickness of 1mm, so 10+1+1= 12 mm outer diameter. I pressed it in with the bench vise. Adapting the 16 mm rod to the 12 mm outer-diameter of the capacitor shaft is equally simple, with a 16-to-12 mm adapter piece. The store didn't have that one in stock, so I used a 3 adapters: 16-to-10, 10-10 (female-female), and 10-to-12 mm. I will install a ball bearing with 16mm bore on the rod, close to the motor.

    Mag Loop

    Gear wheel and copper adapter piece


    Mag Loop

    Plastic drive-shaft with gear wheel installed


    Controller softWare

    Obviously, the Phidgets motor controller card needs to be controlled from my PC. This requires the user (me) to somehow create software. The Phidgets website provides a library of dll and API files, and some simplistic code samples and low level suggestions on how to control the card via Visual Basic, C/C++, LabView, MatLab, Java, etc.

    I decided to go with LabView, because I have access to it, and it is graphically oriented (both design and the controller). It has taken me over a week of spare time to learn "LabView 8 Pro" well enough to make a quite decent controller with a nice Graphical User Interface (GUI). My GUI has three tabs: "Control", "Cal", and "Config".

    Next time around, I may have a go at Visual Basic, though it is limited to "Windows". The development tools are basically free, whereas LabView is prohibitively expensive for private use. And unlike LabView, no enormous Real Time Operating System needs to be installed.

    Mag Loop

    The "Control" tab of the GUI of my varco motor-drive control software


    The "Control" tab provides the GUI for the following functionality:

    • Indication of whether the software has established contact with the Phidgets card.
    • A toggle switch for commanding the Phidgets card to energize the motor. Default is de-energized. A LED indicates energization status feedback from the card. Note that the card does not know whether a motor is actually attached or electrical power is available, so this (and of other parameters such as speed and position) is only a feedback of the commanded state.
    • Three ways to enter the desired motor position. A 3-position slide switch (lower right-hand corner) is used to select one of them (a small LED lights up next to the selected source):
    • Type-in the desired antenna frequency (followed by "enter" on your keyboard), with incremental up/down buttons (+/- 1 KHz).
    • Radio-buttons for eight preset (and configurable) frequencies.
    • A magenta slider (with incremental up/down buttons, +/- ½-step) to command motor position, rather than frequency. There is a push button next to this slider. When pushed, the slider position is synchronized to the actual motor position. This is useful when using a pre-set frequency, and needing to tune around this position.
    • Two blue sliders that indicate the selected motor position and the actual motor position. The associated numerical positions are expressed in both motor ½-steps, and revolutions of the tuning capacitor. The upper limit of all three control & indicator sliders is initialized based on the gear ratio and the number of 1/2 steps per motor rev. Note that the actual motor position is not measured - the controller card just keeps track of how many steps it commanded with respect to the initialization position.
    • A "stop" button, that halts execution of the control software and commands the controller card to de-energize the motor.

    If a desired frequency is selected (numerical entry or preset), then the software interpolates the antenna's calibration data to calculate the corresponding motor position. This interpolation scheme, and assigning the labels of the radio buttons based values read from a file, was the trickiest part of the software design! Note that the calibration data is only valid at a certain temperature and position or the antenna. E.g., if the data was obtained with a cold antenna, and the sun (or QRO operation) heats it up, then the actual resonance frequency will drift.

    When turning a vacuum capacitor, there is no need to apply holding torque when not moving (unlike other applications. Hence, there is no need to keep motor energized while at rest. However, no harm is done when the motor is kept energized, and turning the energization on & off for each movement makes the controller software more complex. Also, when the motor is re-energized, it may jump a step. So: my controller software keeps the motor energized (with manual override).

    Upon start-up, the controller reads-in three tiny text files:

    • Initialization settings for the Phidgets card and the controller: acceleration limit, velocity limit (½-steps/sec), the number of ½-steps per revolution of the motor, gear ratio between the motor and the tuning capacitor, offset (½-steps), number of capacitor revs for end-to-end travel.
    • Preset frequencies of the operator's choice.
    • Calibration data (resonance frequency of the antenna, measured for each full revolution of the capacitor shaft). Obviously, the calibration data from my antenna will not be correct for someone else's antenna (or my own antenna at a different location).

    Mag Loop

    The "Config" tab of the GUI of my varco motor-drive control software


    The "Config" tab provides the GUI for the following functionality:

    • Indication of the serial number read from the Phidgets card.
    • Setting of which motor to command (the Phidgets 1062 card handles four motors; default is 0). Note: this not the number of motors that are attached to the card.
    • Location of the initialization data for the card and the controller. The file location has a default, but a browser button can be used to locate the file.
    • A numerical entry (with incremental up/down buttons) for modifying the offset. I added this feature, to be able to adjust the applied offset (from the init file) when (re)starting the software, without having to modify the initialization data file. This allows to adjust for imprecise positioning at the reference position.
    • Indication of the eight preset frequencies red from the presets data file. The file location has a default, but a browser button can be used to locate the file.

    Mag Loop

    The "Cal" tab of the GUI of my varco motor-drive control software


    The "Cal" tab provides the GUI for the following functionality:

    • A plot of the calibration data. The file location has a default, but a browser button can be used to locate the file.
    • Two push-buttons, for resetting the card's internal "current position" either to zero or to max position (the motor's ½-steps per rev, times the number of revs of the capacitor). This feature is used when the motor is positioned at the known reference position ("end stop"). The LED next to the button indicates whether it is OK to push the button (OK = when the motor is not moving).
    • A block for future functionality.

    IMPORTANT: I have made the entire design and software package of my controller application available below. It comes without guarantees. Please note that I do not have the time to provide support for its installation or operation. Sorry!

    • The graphical design (detailed block diagram) of V21 of my controller is here (the image has enough resolution for fully zooming-in on the details).
    • The actual LabView "virtual instrument" design file (.vi) of my controller is here.
    • LabView "Pro" supports creating a LabView-independent .exe file. The zipped executable package of my controller is here.
    • This .exe application can run without the LabView development environment (i.e., you don't need the costly LabView suite), but is does require the LabView Run-Time Engine (RTE) Version 8.0. This is available for free - for all standard operating systems - from the National Instruments website. It appears that using RTE version higher than 8.0 causes problems with my software.
    • Of course you must install the drivers that came with the Phidgets card (or download from phidgets.com). I used this executable drivers package.
    • The zipped package of the three data files that I use (initialization, presets, calibration data) is here. Changes to these files must be made with an ASCII-editor such as Notepad or Wordpad - do not use a word-processor such as Microsoft Word!
    • As noted further above, my control software can also be used with the Phidgets 1063 controller for a single bipolar stepper motor. The 1063 is based on 1/16 steps, whereas the 1062 is based on 1/2 steps. When using my software with a 1063 card, the MagLoop-card-init.lvm file must be edited accordingly (again, only with a simple ASCII text editor, not MS Word or similar).
    • This means that I do not know if my software can work at all with Phidgets cards other than 1062 and 1063! You can try it at your own risk - I cannot support your experiments.

    External links last checked: October 2015

    REFERENCES


    External links last checked: October 2015


    red-blue line


    ©1999-2016 F. Dörenberg, unless stated otherwise. All rights reserved worldwide. No part of this publication may be used without permission from the author.