Vorrichtung zum Aussenden von in Bildelemente zerlegten Schriftzeichen nach dem Hell-System mittels Impulsfolgen

Patentiert im Gebiet der Bundesrepublik Deutschland vom 29. April 1954 an
Patentanmeldung bekanntgemacht am 24. November 1955
Patenterteilung bekanntgemacht am 30. April 1958

Die Erfindung betrifft eine Vorrichtung zum Aussenden von in Bildelemente zerlegten Schriftzeichen nach dem Hell-System mittels Impulsfolgen, die den bei der Zerlegung der einzelnen Schriftzeichenfelder in eine gleichbleibende Anzahl gleich großer schwarz-weißer Bildelemente erhaltenen binären Zeichenfolgen eindeutig zugeordnet sind, unter Verwendung der magnetischen Kurzzeitspeicherung.

Es ist bekannt, derartige Impulsfolgen auf einem Magnetband oder einer magnetischen Trommel zu speichern und zu einem späteren Zeitpunkt wieder abzunehmen.

Für Typenfertigungsanlagen, die sich zur Darstellung eines Schriftzeichens entsprechender Code-Impulsfolgen in einfachster Weise in Impulsfolgen nach dem Hell-Spannungssystem umsetzen, die bei der Verarbeitung von Schriftzeichen in Bildelementen erhaltenen Schwarz-Weiß-Folgen entsprechen.

Die Erfindung macht von der magnetischen Kurzzeitspannung Gebrauch, um Schriftzeichen in einfachster Weise in Impulsfolgen nacheinander in einem System zu speichern, das einen übertragenden Schriftzeichenzeiger und nachfolgende Schriftzeichenfolge in einem Bildelementenstandorten schwerwiegend, festgestellte Zeichenfolgen auf der magnetischen Schriftzeichenfolge einspearen und nachfolgende Zeichenfolgen auf einem magnetischen Bildelemente absorbieren.

Druckkurzzeitig gegen den umlaufenden Speicher, so werden die einzelnen Impulse je einer Impulsfolge gleichzeitig dem Speicher aufgenommen und können anschließend in einem magnetischen Schriftzeichenstandorten zeitig nacheinander als Impulsfolgen aufgenommen und auf die Übertragungsleitung gegeben werden. Als Speicher wird zweckmäßigerweise eine rotierende magnetisierte Trommel oder ein endloses Magnetband verwandt, das allen Anschlaghebeln gemeinsam ist. Während der Abgabe der Nockenscheibenzahlen der Zahlen der übertragenden Schriftzeichenfolge gleich ist, wird nach der Erfindung nur ein einziges dauernd umlaufendes Organ benötigt, nämlich die rotierende Scheinertrommel oder ein umlaufendes endloses Magnetband.

Während das Hell-Schreiber-System bisher zwar sehr einfache Empfänger, aber dafür komplizierte Geräte erfordert, ermöglicht die Erfindung, nunmehr auch sehr einfache Geräte zu verwenden.

Es ist für die Erfindung ohne Bedeutung, ob die Bildelemente als Gleichstrom- und Wechselstromimpulse auf die Empfänger aufgenommen werden oder ob sie als negative Buchstaben durch Längenmessung in einer dauernden periodischen Wechselstrom-Aufzeichnung auf die Schreibscheibe dargestellt werden.

In den Zeichnungen ist eine Ausführungsform der Erfindung näher erläutert.

Fig. 1 zeigt die Gesamtsicht eines Geräts und Fig. 2 die für die Zeichengabe erforderlichen Organe im einzelnen.

Fig. 3 zeigt einen Anschlaghebelkopf mit den Bildelementen eines Zeichens.

Fig. 4 gibt die entsprechenden Bildimpulse wieder.

In Fig. 2 ist das Aufmagnetisieren eines Zeichens dargestellt. Der Anschlaghebel 1 ist um die Achse 2 drehbar gelagert und wird durch die Feder 3 in seiner Ruhelage gehalten. In einer Nase 4 des
Tastenhebels 1 greift das Ende des Anschlaghebels 5 ein, der um die Achse 6 drehbar gelagert ist. Der Kopf 7 dieses Hebels trägt die in einer Reihe angeordneten Bildelemente eines Zeichens, wie die Fig. 3 ausführt. Der Kopf 7 besteht aus magnetischem Material, das die Bildelemente 8 als Erhöhungen trägt. Die Erhöhung 9 dient zur Darstellung des Startsignals, an das sich im Falle des Buchstabens E die sieben Abstastlinien 10 bis 16, die Bildelemente zur Wiedergabe des Buchstabens E, anschließen. Die Randzonen 10 und 16 des Schriftzeichens sind besonders breit gehalten.

Das Magnetrad 17 (Fig. 2) dreht sich gleichmäßig in Pfeilrichtung am Hörkopf 18, an dem die Fernleitung angeschlossen ist, und am Löschkopf 19 vorbei, der mit Gleichstrom gespeist wird. Drückt man die Taste 1 nach unten, so schnellt der Anschlaghebel 5 in der Pfeilrichtung vorwärts bis an den Anschlag 20. Der Kopf 7 steht dicht vor dem Magnetrad 17, ohne dieses zu berühren. Dabei werden die Bildelemente 8 und 9 (Fig. 3) auf das Magnetrad 17 aufmagnetisiert. Der Anschlaghebel 5 fällt durch den Anprall am Anschlag 20 wieder zurück. Die Drehzahl des Magnetrades 17 ist so bemessen, daß ein Verschwinden der Bildelemente während des Aufmagnetisierens nicht auftritt. Wenn die entsprechend polarisierten Stellen des Magnetrades 17 den Hörkopf erreicht haben, werden dort die Bildelemente der Reihe nach als Impulsfolge abgenommen. Es ergibt sich dabei im Hörkopf 18 die in Fig. 4 von oben nach unten verlaufende Impulsfolge, die über die Fernleitung zum Start-Stop-Empfänger geleitet wird und in bekannter Weise das Zeichen E aufschreibt.

In Fig. 1 ist die gesamte Anordnung des Gebers dargestellt. Der Motor 21 treibt über eine Riemenübersetzung 22 das Magnetrad 17 an. Der Hörkopf 18 und der Löschkopf 19 sind radial zum Magnetrad 17 angeordnet. Das Tastenfeld 23 mit Leertaste 24, der nur ein Startsignal zugeordnet ist, erhebt sich von der Schreibmaschinenähnlich aufgebaut. Die Anschlaghebel 5 mit ihren Köpfen 7 können durch Tasten- und Druck gegen das Magnetrad 17 geführt werden und wieder zurückfallen. Der Anschlag 20 bestimmt die Größe der Lichtspalte zwischen Kopf 7 und Magnetrad 17. Der Aufzeichnungsvorgang auf dem Magnetrad 17 kann auch so erfolgen, daß durch den Sprechkopf 19 auf die Scheibe hochfrequente Schwingungen (Wechselmagnetisierung) aufmagnetisiert werden, die durch die Bildelemente des Kopfes 7 individuell gelöst werden. Dabei entsteht eine negative Schrift. Die Unterbrechungen der Wechselmagnetisierung werden vom Löschkopf 19 aufgenommen, weitergeleitet und anschließend durch 19 wieder aufgefällt.

PATENTANSPRÜCHE:

1. Vorrichtung zum Aussenden von in Bild- und Schriftzeichen zeigenden Signalen, die durch auf der Zeicheneinheit der einzelnen Bildelemente in einer gleichbleibenden Anzahl gleich großer schwarz-weißer Bildelemente erhaltenen binären Zeichenfolgen eindeutig zugeordnet sind, unter Verwendung einer magnetischen Kurzzeitspeicherung, gekennzeichnet durch die Komination der nachfolgenden bekannten Mittel:

a) eine nach Art der Schreibmaschine angeordnete Tastatur (23) mit einer der Anzahl der zu übertragenden Schriftzeichen entsprechenden Anzahl von Tastenhebeln (1) und durch diese betätigten Typenhebel (5) mit Typenköpfen (7), auf denen je eine den zu übertragenden Schriftzeichen zugeordnete Zeichenfolge (10 bis 16) magnetisch dargestellt ist;

b) ein umlaufender magnetisierbarer Speicher (17), an den die Typenköpfe (7) durch Betätigung der Tasten (23) kurzzeitig herangeführt und auf dem die magnetischen Darstellungen der einzelnen Zeichenfolgen (10 bis 16) jeweils auf einmal magnetisch aufgezeichnet werden;

c) ein magnetischer Abtastkopf (18), durch den unmittelbar anschließend an die Aufzeichnung einer Zeichenfolge (10 bis 16) die einzelnen Zeichen (8) dieser Folge zeitlich nacheinander abgetastet und als Impulse ausgesendet werden;

d) ein magnetischer Löschkopf (19), durch den die Zeichenfolgen (10 bis 16) nach der Abtastung gelöscht werden.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die magnetische Darstellung der Zeichenfolgen (10 bis 16) auf den Typenköpfen (7) aus einer Reihe angeordneter, aneinander grenzender, rechteckförmiger Erhöhungen und Vertiefungen (8) eines magnetisierbaren Materials besteht.

3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die magnetische Darstellung der Zeichenfolgen (10 bis 16) auf den Typenköpfen (7) aus einer Reihe angeordneter, aneinander grenzender, rechteckförmiger, sprunghaften Anderungen der magnetischen Dichte unterworfenen Zonen (8) eines lokal magnetisierbaren Materials besteht.

4. Vorrichtung nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß bei Anwendung des Start-Stop-Prinzips am Anfang der magnetischen Darstellung jeder Zeichenfolge (10 bis 16) auf den Typenköpfen (7) je ein zusätzliches magnetisches Element (9) vorgesehen ist, das bei seiner Abtastung durch den Abtastkopf (18) den Startimpuls für den Empfänger erzeugt.

5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als umlaufender magnetisierbarer Speicher eine an ihrer Oberfläche mit einer ferromagnetischen Schicht versehene Trommel (17) vorgesehen ist.

6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß als umlaufender magnetisierbarer Speicher ein mit einer ferromagnetischen Schicht versehenes endloses Band vorgesehen ist.

7. Vorrichtung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das magnetisierbare
Material für die magnetische Darstellung der Zeichenfolgen (10 bis 16) auf den Typenköpfen (7) aus Permanentmagneten besteht.

8. Vorrichtung nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das magnetisierbare Material für die magnetische Darstellung der Zeichenfolgen (10 bis 16) auf den Typenköpfen (7) aus Elektromagneten besteht.

9. Vorrichtung nach Anspruch 1 bis 4 und 8, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die bewirken, daß die Zeichen (8) einer Zeichenfolge (10 bis 16) in Form von lokalen Wechselmagnetisierungen bestimmter Frequenz auf dem Speicher (17) aufgezeichnet werden.

10. Vorrichtung nach Anspruch 1 bis 4 und 8, dadurch gekennzeichnet, daß Mittel vorgesehen sind, die bewirken, daß der Speicher (17) vor der Aufzeichnung der Zeichenfolgen (10 bis 16) einer gleichmäßigen Wechselmagnetisierung bestimmter Frequenz unterworfen wird und daß die Aufzeichnung der Zeichen (8) einer Zeichenfolge (10 bis 16) durch individuelle Lösung der Wechselmagnetisierung zustandekommt.

In Betracht gezogene Druckschriften:
Deutsche Patentschriften Nr. 767 451, 881 056;
französische Patentschrift Nr. 1 034 052;
USA.-Patentschriften Nr. 1 883 907, 2 540 653, 2 614 169;
»High Speed Computing Devices«, Mcgraw Hill Book Company, New York, 1950 (engineering research associates, inc.).

Hierzu 1 Blatt Zeichnungen